132, 2 (1963). $\overline{\ \ }^{16}$ G. L. Flint, Jr., M. A. thesis, University of Texas, 1968 (unpublished).

¹⁷G. A. Baraff, Phys. Rev. 178, 1155 (1969).

 $^{18}\mathrm{P.}$ R. Antoniewicz (unpublished).

¹⁹C. C. Grimes and S. J. Buchsbaum, Phys. Rev. Letters 12, 357 (1964).

²⁰Obtained from A. F. Clark, National Bureau of Standards, Boulder, Colo.

²¹P. R. Antoniewicz, Phys. Letters 24A, 83 (1967).

²²S. G. Eckstein, Phys. Rev. Letters <u>16</u>, 611 (1966).

²³P. R. Antoniewicz, L. T. Wood, and J. D. Gavenda,

Phys. Rev. Letters 21, 998 (1968).

²⁴W. A. Harrison, Phys. Rev. <u>118</u>, 1190 (1960).

²⁵M. R. Halse, Phil. Trans. Roy. Soc. London A265, 507 (1969).

²⁶S. J. Buchsbaum and P. A. Wolff, Phys. Rev. Letters <u>15</u>, 406 (1965).

²⁷C. C. Grimes, G. Adams, and P. H. Schmidt, Phys. Rev. Letters 15, 409 (1965).

²⁸P. R. Antoniewicz (unpublished).

²⁹J. R. Klauder, W. A. Reed, G. F. Brennert, and

J. E. Kunzler, Phys. Rev. 141, 592 (1966).

PHYSICAL REVIEW B

VOLUME 2, NUMBER 6

15 SEPTEMBER 1970

Proposed $X_{\alpha\beta}$ Method for Solids*

A. M. Boring

University of California, Los Alamos Scientific Laboratory, Los Alamos, New Mexico 87544 (Received 30 March 1970)

Results of atomic calculations pertinent to the use of Herman's $X_{\alpha\beta}$ method in energy-band calculations are given. With α fixed at $\frac{2}{3}$, two β parameters were determined for each atom, one satisfying the virial theorem, and the other the variational principle. The object of these calculations was to determine the sensitivity of β to changes in charge-density inhomogeneity in going from one atom to the next and the sensitivity to the potential shift of a given atom obtained by turning on the Latter potential. These results are compared with those of Kmetko on the X_{α} method. The results reported here indicate that a β of 0.0040 should be used in applying the $X_{\alpha\beta}$ method in solids.

In this paper the results of a study of the sensitivity of Herman's $X_{\alpha\beta}$ local-exchange potential¹ to the Latter potential and the inhomogeneous charge density in atomic systems are reported. Slater has suggested² a method, based on the determination of the α parameter in the free atom, for using the X_{α} local-exchange potential in a crystal. In a crystal one can only determine the energy by the statistical method, so the variational principle and the virial theorem are not available to aid in the determination of α . For this reason Slater has proposed that one use X_{α} orbitals for the atom and determine both the α that satisfies the virial theorem and the different α that minimizes the total energy of the atom as calculated via Hartree-Fock theory. Slater has indicated that the α that satisfies the virial theorem would be the more appropriate one to use in the crystal.

Kmetko³ has obtained the set of α 's that minimize the total energy for all atoms in the Periodic Table. He obtained results both with and without the Latter potential. Since Kohn and Sham⁴ have shown that for a nearly homogeneous electron gas the variational principle requires $\alpha = \frac{2}{3}$ for the oneelectron eigenvalue equations, deviations from this value can be taken as an indication of the inhomogeneity of the system.

In Herman's $X_{\alpha\beta}$ method this inhomogeneity is accounted for by including gradient corrections in the local exchange. The local-exchange operator is then written as

$$V_{X}^{\alpha\beta}(r) = \left[\alpha + \beta G(r)\right] V_{XS}(r), \tag{1}$$

where

$$G(r) = \frac{1}{\rho^{2/3}(r)} \left[\frac{4}{3} \left(\frac{\nabla \rho(r)}{\rho(r)} \right)^2 - 2 \frac{\nabla^2 \rho(r)}{\rho(r)} \right]$$

$$V_{XS}(r) = -6 \left(\frac{3\pi}{8} \rho(r)\right)^{1/3}$$
,

and $\rho(r)$ is the self-consistent charge density.

Herman has shown the oscillating structure of G(r) for the krypton atom, ⁵ and this structure was found to be typical of all the atoms studied.

Since the main goal of this study was to determine the sensitivity of β , α was set to the homogeneous-electron-gas value of $\frac{2}{3}$. The β that satisfied the virial theorem (β_{ν}) and the β that minimized the total energy (β_{min}) when calculated via Hartree-Fock theory were then determined. In order to make a general study, but without studying

TABLE I. The set $(\beta_{\nu}, \beta_{\min})$ for selected atoms.

		Latter		No Latter		
Atom	Z	β_{ν}	β_{\min}	β_{ν}	$eta_{ exttt{min}}$	
Ne	10	0.0060	0.0072	0.0036	0.0052	
K	19	0.0042	0.0042	0.0040	0.0022	
Mn	25	0.0040	0.0044	0.0038	0.0048	
Cu	29	0.0040	0.0058	0.0036	0.0066	
As	33	0.0042	0.0060	0.0040	0.0058	
Tc	43	0.0042	0.0048	0.0040	0.0054	
Sb	51	0.0042	0.0052	0.0040	0.0052	
Eu	63	0.0040	0.0048	0.0038	0.0038	

all the atoms in the Periodic Table, a series of eight atoms was chosen in which the valence orbitals all have different (n, l) character. These are $Ne(2p^6)$, K(4s), $Mn(3d^54s^2)$, $Cu(3d^{10}4s^2)$, $As(4s^24p^3)$, $Tc(4d^55s^2)$, $Sb(5s^25p^3)$, and $Eu(4f^76s^2)$. The study was not carried beyond Eu because the calculations are nonrelativistic. The set $(\beta_{\nu}, \beta_{\min})$ was determined for these atoms both with and without the Latter potential $[V(r) \sim -1/r]$ at large r, and the results are shown in Table I. β_{\min} is seen to vary considerably, but β_{ν} (except for Ne) is quite insensitive both to charge density inhomogeneity and to Latter potential. In Table II the changes determined in β and in α , due to the shift in atomic potential as the Latter potential is turned on, are given. Here

$$\Delta \beta = \beta \text{ (Latter)} - \beta \text{ (no Latter)},$$

 $\Delta \alpha = \alpha \text{ (Latter)} - \alpha \text{ (no Latter)}.$

It is seen that $\beta_{\nu} = 0.0040 \pm 0004$ (except for Ne). This shift in the potential of the isolated atom is not the same as the shift in the potential in going from an isolated atom to a solid, but the electronic states that change most drastically when atoms form a solid are the ones most affected by this kind of potential shift and in this sense this result indicates that β_{ν} should not change in going to the solid. In Table III the total energies are given, and one can see that $E_{\alpha\beta}$ with no Latter correction

TABLE II. Differences in β_{ν} , β_{\min} , and α_{\min} due to Latter potential correction.

Atom	$\Delta eta_{ u}$	$\Deltaeta_{ ext{min}}$	$\Delta lpha_{ exttt{min}}^{ ext{ a}}$	α_{\min}^{a}		
Ne	0.0024	0.0020	0.077	0.741		
K	0.0002	0.0020	0.011	0.709		
Mn	0.0002	0.0004	0.019	0.714		
Cu	0.0004	0.0008	0.026	0.733		
As	0.0002	0.0002	0.016	0.711		
\mathbf{Tc}	0.0002	0.0016	0.016	0.701		
Sb	0.0002	0.0000	0.018	0.689		
Eu	0.0002	0.0010	0.009	0.695		

^aObtained from Ref. 3.

TABLE III. Total energies (in Ry).

	La	atter	No Latter		
	$E_{lphaeta}$	E_{α}^{a}	$E_{\alpha\beta}$	$E_{ m HF}^{\ \ b}$	
Ne	- 257.023	- 257.067	- 257.082	- 257.094	
K	-1198.312	-1198.189	-1198.315	-1198.330	
Mn	-2299.187	-2299.175	-2299.205	-2299.252	
Cu	-3277.786	-3277.814	-3277.847	-3277.928	
As	-4468.273	-4468.258	-4468.307	-4468.345	
Tc	-8409.151	-8409.118	-8409.170	-8409.215	
Sb	-12626.779	-12626.750	-12626.813	-12626.85	
Eu	- 20 846.032	- 20 846.000	- 20 846.043	- 20 846.16	

aCalculated in the present study.

^bObtained from Mann's nonrelativistic Hartree-Fock program Los Alamos Report No. LA-3690, 1967 (unpublished).

(energy calculated by Hartree-Fock theory with $X_{\alpha\beta}$ orbitals) is much closer to the Hartree-Fock value $(E_{
m HF})$ than is E_{lpha} (energy calculated by Hartree-Fock theory with X_{α} orbitals).

In an attempt to find some relationship between the X_{α} and $X_{\alpha\beta}$ methods, several averages of $\langle \frac{2}{3}$ $+\beta G(r)$ were taken. The objective was to determine whether some average of $(\frac{2}{3} + \beta G(r))$ was equal to the α_{\min} that minimizes the total energy in the X_{α} method. The averages chosen were

$$\begin{split} \alpha_{\rm I} &= \tfrac{2}{3} + \beta \, \int_0^\infty \, G(r) dr \,, \\ \alpha_{\rm II} &= \tfrac{2}{3} + \beta \, \int_0^\infty \, G(r) \rho(r) dr \, / \int_0^\infty \, \rho(r) dr \,, \\ \alpha_{\rm III} &= \tfrac{2}{3} + \beta \, \int_0^\infty \, G(r) \rho(r)^{1/3} \, dr \, / \int_0^\infty \, \rho(r)^{1/3} \, dr \,, \\ \alpha_{\rm IV} &= \tfrac{2}{3} + \beta \, \int_0^\infty \, G(r) \rho(r)^{4/3} \, dr \, / \int_0^\infty \, \rho(r)^{4/3} \, dr \,. \end{split}$$

In Table IV the values obtained for the atoms studied are shown. The average in which G(r) is weighted by $\rho(r)^{1/3}$ was taken because this is the effective weighting in the one-electron-eigenvalue equation. The effective weighting of the exchange contribution to the total energy is $\rho^{4/3}(r)$. As can be seen from Table IV the differences between

TABLE IV. Averages of $\langle \frac{2}{3} + \beta G(r) \rangle$.

-						
Atom	$\alpha_{\mathbf{I}}$	α_{11}	α_{III}	$\alpha_{ extsf{IV}}$	$\Delta_1^{\ a}$	$\Delta_2^{\ b}$
Ne	0.537	0.699	0.662	0.750	0.009	0.074
K	0.399	0.673	0.655	0.690	0.019	0.042
Mn	0.549	0.679	0.662	0.706	0.008	0.047
Cu	0.400	0.679	0.644	0.713	0.020	0.066
As	0.440	0.679	0.655	0.705	0.006	0.044
\mathbf{Tc}	0.482	0.675	0.656	0.696	0.005	0.034
Sb	0.386	0.674	0.652	0.693	0.004	0.022
Eu	0.500	0.671	0.659	0.684	0.011	0.028

 $^{^{}a}\Delta_{1} = |\alpha_{IV} - \alpha_{\min}|$. $^{b}\Delta_{2} = |\frac{2}{3} - \alpha_{\min}|$.

 α_{\min} 's and α_{IV} 's is small. Although G(r) oscillates and samples each orbital differently its effect in the calculation of the total exchange energy is very similar to that of α_{\min} . This comparison between the factors multiplying the $\rho^{1/3}(r)$ exchange is possible because the charge densities determined from the $X_{\alpha\beta}$ and X_{α} method do not differ significantly. The calculated G(r) was modified at large and small values of r in the same manner as in Herman's work. 1

The results of many energy-band calculations have been shown to be sensitive to the exchange potential, and Slater's scheme, which is guided by first-principles arguments, seems more appealing than empirically determining α (or β) in a solid. However, the energy-band calculation of Cu by Snow⁶ seems to indicate that the α = 0.83 results

are in much better agreement with experimental results from photoemission data, magnetoacoustic studies, and de Haas-van Alphen work than is $\alpha=0.67$. Since $\alpha=0.721$ is the value one would use in Slater's scheme, it is not clear that it will give the best results in some crystals. An energy-band study of Cu based on Herman's $X_{\alpha\beta}$ scheme, with $\beta=0.0040$, is being undertaken to determine its merits.

The author would like to thank the following people in this Laboratory for their assistance: E. Kmetko for interesting discussions on the problem and for providing the results of his X_{α} calculations; J. H. Wood for the use of his computer program and for his interest in the problem; F. W. Schonfeld for encouragement; and W. Miner for reading the manuscript.

PHYSICAL REVIEW B

VOLUME 2, NUMBER 6

15 SEPTEMBER 1970

Open-Orbit Resonances and Magnetic Field Dependence of the Ultrasonic Attenuation of Shear Waves in Magnesium†

R. V. Kollarits and J. Trivisonno
Physics Department, John Carroll University, Cleveland, Ohio 44118

and

R. W. Stark

The James Franck Institute and the Department of Physics, University of Chicago, Chicago, Illinois (Received 20 February 1970)

The open-orbit resonances in the ultrasonic attenuation of shear waves in magnesium have been studied. The ultrasonic open-orbit resonances have been observed for magnetic fields applied in the basal plane for fields as high as 1100 G. The existence of the open-orbit resonance provides direct evidence for the presence of a spin-orbit-induced energy gap in the AHL Brillouin-zone plane. The period of the open orbit is in excellent agreement with the Brillouin-zone dimension in the [0001] direction. The effects of magnetic breakdown are observed to be of importance in fields of about 1 kG.

INTRODUCTION

Recent magnetoacoustic attenuation¹ and de Haas-van Alphen² experiments have led to a quantitatively accurate understanding of the electronic band structure³ of magnesium. The nonlocal-band-structure calculation reported in Ref. 3 provided for the experimental data a detailed description whose accuracy was limited only by a

calculational truncation error of about 1.5×10^{-3} Ry. This, however, was not sufficient to provide any information about the magnitude of spin-orbit splitting energy gaps which Cohen and Falicov⁴ and Falicov and Cohen⁵ had previously estimated to be about 5×10^{-4} Ry. As a consequence, the effects of spin-orbit coupling were included in Ref. 3 only through the implicit use of the single-zone scheme as a basis for the description of the

^{*}Work performed under auspices of the U.S. Atomic Energy Commission.

¹F. Herman, J. P. Van Dyke, and I. B. Ortenburger, Phys. Rev. Letters <u>22</u>, 807 (1969).

²J. C. Slater, S.S. M. T. G., M. I. T. Semi-Annual Progress Report No. 71 (unpublished), pp. 13, 14.

³E. Kmetko, Phys. Rev. A <u>1</u>, 37 (1970).

⁴W. Kohn and L. J. Sham, Phys. Rev. <u>140</u>, A1133 (1965).

⁵F. Herman, Intern. J. Quant. Chem. <u>35</u>, 827 (1970).

⁶E. C. Snow, Phys. Rev. <u>172</u>, 708 (1968); <u>171</u>, 785 (1968).